Motivation from last time:

What can get us in trouble?

key diff: progress

Background: Graphs (Part I, Section 4) $G = (\bigcup_{i} G \subseteq \bigcup_{i} W)$ Vertices eages weights M = |V| M = |G|Typically identify V = [n] Vertex nomes: 1,2,..., n 3 2 directed indirected Edges: ef E leE "tə:1" "head" (i,j) = (j,i)i ----> j i •_____ j WEER Weights: Wo & R

Pepresenting 2 graph
In this class: 2012 carcy list model (Lin lot LE)
Lot : vertices know edges Le: edges know vertues

$$1 (1/2)$$

 $2 (2/1) (2/2)$
 $3 (3/3)$
 $3 (3/3)$
 $3 (3/3)$
 $3 (3/3)$
 $4 (4/2)$
 $5 (pointers to LE)$
 $2 (2/3)$
 $2 (2/3)$
 $3 (3/3)$
 $3 (3/3)$
 $3 (3/3)$
 $3 (3/3)$
 $3 (3/3)$
 $3 (3/3)$
 $3 (3/3)$
 $3 (3/3)$
 $3 (3/3)$
 $3 (3/3)$
 $3 (3/3)$
 $3 (3/3)$
 $3 (3/3)$
 $3 (3/3)$
 $3 (3/3)$
 $3 (3/3)$
 $3 (3/3)$
 $3 (3/3)$
 $3 (3/3)$
 $3 (3/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 $4 (2/3)$
 4

Directed acyclic oraphs (Part III, Section 5.2) Definition: Directed graph (duh) • Acyclic Example Not a DAG `DAG It's not too obvious ... (an we make it easier to tell? Yes! topological ordering

Topolosical ordering
Pendome vertices
$$l_1 2_1 \dots n$$

All edges $e = (i, j), i < j$
(laim: \exists top order \iff DAG
 $\downarrow 2 3 = 1 2 3 4$
Proof ($=$): Suppose top order + cycle
 $(i, i2), (i2, i3) \dots (ix_1 ik), (ik_1 i_1)$
 $\downarrow 2 3 = 1 2 3 4$
Proof ($=$): Suppose top order + cycle
 $(i, i2), (i2, i3) \dots (ix_1 ik), (ik_1 i_1)$
 $\downarrow 2 3 = 1 2 3 4$
Proof (\ll): We'll see in Part V
Proof (\ll): We'll see in Part V
Proof (\ll): We'll see in Part V

SSSP on DAGS
SSSP on DAGS
SSSP = Single
source
source
shurtest
paths
Input: DAG
$$(V_{1}E_{1}W)$$

U in top order
Output: Shurtest $(1,j)$ path $\forall j \in (n)$
Min $\sum_{P \leq E} W_{e}$ (think of
P \leq E efp
P is (a) path
 $\sum_{G = 3}^{10} W_{e}$ (think of
as lengths)
Ecomple
 2^{-1}
 4^{-1}
SCI) = Shortest $1 \rightarrow j$ path
SCI) = 0 $S(2) = 2$ $S(3) = (a)$
 $SCH) = -1$ $S(5) = 8$

let's begin.

- · Multidimensional DP · Divide-and-
- (onguer
- · Prefix-based DP • DAGs
- The final boss. Our tools:

Input:
$$G = (V_{1} \in W_{1})$$
 Warning:
Marken to DAG.
Output: $\forall (i,j) \in V \times V_{1}, i \neq j$
Min $\sum_{P \subseteq E} W_{2}$ (Unreaduable)
 $P \subseteq E = e \in P$
 $P : i : \Rightarrow i rath$
Assumption: no begative-weight cycles
 $i = \sum_{i=1}^{-S} \sum_{j=1}^{-1} \sum_{i=1}^{-S} (revisit hn Part V)$
Baseline: $O(m + n) \times O(n)$ (DAGs)
 $= O(n^{S})$
 $We'll get fluis for all graphs.$

$$\begin{aligned} |\det |: \quad |ength of y_{th} \\ Try: \quad S(i)(j)(l) \\ = Shortest \quad i \rightarrow j \quad path \quad wl \leq l \quad edges \end{aligned}$$

Issue: progress notion?

Proof: Suppose & appears twice.
Shortcut'. Remove all cycles
i K< skip > K j
At end, < N Vertices
$$\Rightarrow \leq N-1$$
 edges

Purchline:

$$S(i)(j)(n-i)$$

= Shortest i) pyth $wl \leq n-1$ edge)
= Shortest i) yyth l

DP recursion: guess the last edge. S(i)(j)(l) = min S(i)(k)(l-1) (ki)ee + W(kis)

Base Cases: S[i][j][i] = Wais lij] (iii) (

Order: one "slile" l'at à time.

Puntine: $O(n^3) \times O(n) = O(n^4)$

V(1)
$$V^{(2)}$$
 $V^{(3)}$ $V^{(n)}$
N (opies of each vertex $i^{(1)}, i^{(2)}, \dots, i^{(n)}$
()-weight "Short at edges" between $i^{(L)} \rightarrow i^{(L+1)}$
(opies of E between $V^{(L)} \times V^{(L+1)}$
()-weight E between $V^{(L)} \times V^{(L+1)}$
()-weight () Short at edges" between $i^{(L)} \rightarrow i^{(L+1)}$
()-weight () Short at edges" between $i^{(L)} \rightarrow i^{(L+1)}$
()-weight () Short at edges" between $i^{(L)} \rightarrow i^{(L+1)}$
()-weight () Short at edges" between $i^{(L)} \rightarrow i^{(L+1)}$
()-weight () Short at edges" between $i^{(L)} \rightarrow i^{(L+1)}$
()-weight () Short at edges" between $i^{(L)} \rightarrow i^{(L+1)}$
()-weight () Short at edges" between $i^{(L)} \rightarrow i^{(L+1)}$
()-weight () Short at edges" between $i^{(L)} \rightarrow i^{(L+1)}$
()-weight () Short at edges" between $i^{(L)} \rightarrow i^{(L+1)}$
()-weight () Short at edges" between $i^{(L)} \rightarrow i^{(L+1)}$
()-weight () Short at edges" between $i^{(L)} \rightarrow i^{(L+1)}$
()-weight () Short at edges" between $i^{(L)} \rightarrow i^{(L+1)}$
()-weight () Short at edges" between $i^{(L)} \rightarrow i^{(L+1)}$
()-weight () Short at edges" between $i^{(L)} \rightarrow i^{(L+1)}$
()-weight () Short at edges" between $i^{(L)} \rightarrow i^{(L)}$
()-weight () Short at edges" between $i^{(L)} \rightarrow i^{(L)}$
()-weight () Short at edges" between $i^{(L)} \rightarrow i^{(L)}$
()-weight () Short at edges" between $i^{(L)} \rightarrow i^{(L+1)}$
()-weight () Short at edges" between $i^{(L)} \rightarrow i^{(L)}$
()-weight () Short at edges" between $i^{(L)} \rightarrow i^{(L)}$
()-weight () Short at edges" between $i^{(L)} \rightarrow i^{(L)}$
()-weight () Short at edges" between $i^{(L)} \rightarrow i^{(L)}$
()-weight () Short at edges" between $i^{(L)} \rightarrow i^{(L)}$
()-weight () Short at edges" between $i^{(L)} \rightarrow i^{(L)}$
()-weight () Short at edges" between $i^{(L)} \rightarrow i^{(L)}$
()-weight () Short at edges" between $i^{(L)} \rightarrow i^{(L)}$
()-weight () Short at edges" between $i^{(L)} \rightarrow i^{(L)}$
()-weight () Short at edges" between $i^{(L)} \rightarrow i^{(L)}$
()-weight () Short at edges" between $i^{(L)} \rightarrow i^{(L)}$
()-weight ()-weight () Short at edges" between $i^{(L)} \rightarrow i^{(L)}$
()-weight ()-weight ()-weight

SCICICLI = shortest i= j pyth w $l \leq 2^{l}$ edges Only O($n^{2} \log(n)$) such problems!

